黄田野
教授,博导,省级人才计划入选者
湖北省科技团队负责人
联系方式:
办公室:教二楼229室
主要经历:
bet36365路检测中心,教授
新加坡南洋理工大学电子电气工程系,Research Fellow
加拿大McGill University,联合培养
华中科技大学光电国家实验室,博士
研究方向:
目前的研究兴趣是分布式光纤传感、光纤通信以及光纤激光在高速信息处理和传感等领域的应用。主要包括:
1. 新型分布式光纤传感/传能/通信技术与集成:新型感知机理、高速信号采集技术、嵌入式系统与上位机开发、智能化数据与信号处理、集成化仪器研制。
2. 光学频率梳调控机理与应用:非线性动力学、超快光纤激光技术、激光器精密控制、激光器智能化、激光测量。
3. 面向地球物理观测、地质灾害监测、工业检测等应用领域的系统开发与集成。
招生信息:
1. 课题组旨在培养学生综合能力,研究内容涵盖基础研究与技术攻关,在硬件系统搭建、底层和上位机程序开发、原理样机研制等环节均有涉及。
2. 课题组欢迎具备干事创业精神、意志品质坚定、有自驱力的本科生和研究生加入。
3. 课题组将为优秀学生开展科学研究和学术交流创造所需条件。
4. Welcome foreign students with strong self-motivation as well.
科研条件:
1. 分布式光纤传感研究平台
2. 时间腔孤子研究平台
3. 超快光纤激光研究平台
4. 大数据与人工智能研究平台
主要仪器:光谱仪、高速示波器、码型发生器、高速时钟源、可调激光器、超窄线宽激光器、射频仪、自相关仪、任意波形发生器、PI控制器、PDH控制器、掺铒光纤放大器、带宽/波长可调滤波器、Waveshaper等。
学生培养:
1. 2016年至今,课题组研究生累计发表SCI论文60余篇,获评校级优秀硕士论文9篇,10余人获评国家奖学金。
2. 学生就业去向包括:清华大学、南方科技大学等高校;小米、烽火、比亚迪等知名企业;政府事业单位。
3. 学术会议IEEE ICOCN2023优秀粘贴报告奖。
4. 学术会议AFL2022优秀粘贴报告奖。
5. 学术会议IEEE OGC2021最佳学生论文奖。
6. 学术会议IEEE ICICN2020优秀报告奖。
7. 指导多名本科生开展学术研究并发表SCI论文。
8. 指导学生获挑战杯、互联网+、工程机器人大赛等国家级、省级奖项20余项。
项目信息:
1. 国家自然科学基金重大科研仪器研制项目,课题负责人
2. 湖北省科技创新团队项目,主持
3. 湖北省重点研发计划,主持
4. 国家自然科学基金青年项目,主持
5. 广东省自然科学基金面上项目,主持
6. 湖北省自然科学基金面上项目,主持
7. 湖北省科技“晨光计划”,主持
8. 武汉市科技局应用基础前沿项目,主持
9. 航天科技集团XXX所合作项目,主持
10. 航天科技集团基金,主持
11. 武汉光电国家研究中心开放课题,主持
12. 内河航运技术湖北省重点实验室开放基金,主持
13. 地大-鸿志高测校企合作项目,主持
14. 地大-光谷技术校企合作项目,主持
15. 地大-蔚蓝航空校企合作项目,主持
16. 国家重点研发计划,参与
17. 湖北省揭榜制项目,参与
18. 武汉市重大科技“卡脖子”专项,参与
奖励与荣誉:
1. 湖北省“楚天英才计划”,2023
2. IEEE Senior Member (IEEE 高级会员),2024
3. IEEE Photonics Society, OGC青年科学家奖,2024
4. Elsevier Top 2%科学家终生影响力排行榜,2022-2023
5. Elsevier Top 2%科学家年度影响力排行榜,2021-2023
6. 武汉· 东湖国家高新技术开发区“3551人才计划-光谷产业教授”,2023
7. 多波段、可调控脉冲光纤激光关键技术研发与应用,湖北省科技进步三等奖,排名第一,2023
8. 物联网视频感知关键技术研发及其在平安城市中的应用,湖北省科技进步二等奖,排名第三,2020
9. 先进光纤激光器关键技术研发及其在增材制造中的应用,中国轻工业联合会科技进步二等奖,排名第三,2023
10. “挑战杯”大学生创业计划竞赛国家银奖,指导老师,2024
11. 中国国际大学生创新大赛国家银奖,指导老师,2023
12. 中国国际“互联网+”大学生创新创业大赛国家铜奖,指导老师,2023
学术兼职:
1. IEEE China Council Sensors Council and Systems Council Joint Chapter,Secretary,2023-2025
2. IEEE Photonics Technology Letters ACP Special Issue,Guest Editor,2022-2023
3. 湖北省“科技副总”,2021-2022
4. 湖北省激光学会,理事,2019-2024
5. 武汉市激光学会,理事,2019-2024
[1] D. Li, X. Li, T. Huang*, J. Zhang, Z. Wu, L. Xiong, C. Peng, Y. Chen, Q. Qi, P. P. Shum, “Interference Fading Suppression with Multi-Subcarrier Pulse in Distributed Acoustic Sensor,” Optics Express, vol. 32, no.11, 2024
[2] T.Huang*, A. Li, D. Li, J. Zhang, X. Li, L. M. Xiong, J. Tu, W. F. Sun, X. Y. Hu, “Multiple noise reduction for distributed acoustic sensing data processing through densely connected residual convolutional networks,” Journal of Applied Geophysics, vol. 228, 2024.
[3] T. Huang*, H. Zheng, G. Xu, J. Pan, F. Xiao, W. Sun, K. Yan, S. Chen, B. Huang, H. Yu, P. P. Shum, “Coexistence of nonlinear states with different polarizations in a Kerr resonator,” Physical Review A, vol. 109, no. 1, 2024
[4] T. Huang*, C. Tong, J. Pan, Z. Cheng, B. Yu, J. Yin, Z. Yin, S. Chen, H. Yu, K. Yan, et al., “Spatial-multiplexing of nonlinear states in a few-mode-fiber-based Kerr resonator,” Optics Communications., vol. 555, 2024.
[5] Y. Wu, Y. Zhou, J. Pan, T. Huang*, and S. Jin, “Design of highly sensitive refractive index sensor based on silicon photonic Mach-Zehnder interferometer,” Optics Communications., vol. 534, 2023.
[6] D. Li, H. Wang, X. Wang, X. Li, T. Huang*, M. Ge, J. Yin, S. Chen, B. Huang, K. Guan, et al., “Denoising algorithm of Φ-OTDR signal based on curvelet transform with adaptive threshold,” Optics Communications., vol. 545, 2023.
[7] Y. Cheng, H. Wang, D. Li, Y. Qiu, M. Luo, X. Zhang, J. Zhang, Z. Wu, T. Huang*, and X. Li, “Interference fading mitigation in coherent Φ-OTDR based on subband phase-shift transform,” IEEE Photonics Journal., vol. 15, no. 5, 2023.
[8] T. Yao, T. Huang, B. Yan, M. Ge, J. Yin, C. Peng, L. Li, W. Sun, and P. P. Shum, “Inverse design of dispersion for photonic devices based on LSTM and gradient-free optimization algorithms hybridization,” Journal of the Optical Society of America B, 40(6), 1525-1532, 2023.
[9] J. Pan, T. Huang*, C. Xu, G. Xu, Z. Wu, J. Zhang, X. Li, Z. Cheng, N. Zhang, H. Yu, et al., “Binding dynamics of cavity solitons in a Kerr resonator with high order dispersion,” Optics Express., vol. 31, no. 22, 35709-35719, 2023.
[10] T. Yao, T. Huang, X. Zeng, Z. Wu, J. Zhang, D. Luo, X. Zhang, Y. Wang, Z. Cheng, X. Li, L. Han, and P. P. Shum, “Multimode waveguide analyses and design based on the FC-LSTM hybrid network,” Journal of the Optical Society of America B, 39(10), 2564-2572, 2022.
[11] X. Tu, Y. Wu, T. Huang*, J. Zhang, and P. P. Shum, “Optimizing two-dimensional polarization-diversity metagrating couplers for silicon photonics,” Journal of the Optical Society of America B-Optical Physics., vol. 39, no. 4, 1256-1262, 2022.
[12] Q. Ji, R. Lei, S. Liu, and T. Huang*, “Highly sensitive based on a Mach-Zehnder interferometer with double-slot hybrid plasmonic waveguide,” Optik., vol. 270, 2022.
[13] J. Zhang, Y. Chen, Z. Wu, S. Feng, P. P. Shum, and T. Huang*, “Panda type separated-circles-formed elliptical ring core few-mode fiber,” Optical Fiber Technology., vol. 73, 2022.
[14] J. Pan, C. Xu, Z. Wu, J. Zhang, T. Huang*, and P. P. Shum, “Dynamics of cavity soliton driven by chirped optical pulses in Kerr resonators,” Frontiers of Optoelectronics., vol. 15, no. 1, 2022.
[15] X. Li, Y. Zhang, D. Li, P. P. Shum, and T. Huang*, “Nonlinear channel equation using gaussian processes regression in IMDD fiber link,” IEEE Photonics Journal., vol. 14, no. 6, 2022.
[16] T. Huang, S. Feng, X. Zeng, G. Xu, J. Pan, F. Xiao, Z. Wu, J. Zhang, L. Han, and P. P. Shum, “Polarization-decoupled cavity solitons generation in Kerr resonators with flattened near-zero dispersion,” Optics Express., vol. 30, no. 12, 20767-20782, 2022.
[17] Z. Wu, J. Zeng, J. Pan, C. Xu, D. Luo, J. Zhang and T. Huang*, “Vector soliton molecules manipulation using projected super-position technique,” IEEE Photonics Technology Letters., vol. 34, no. 2, 105-108, 2022.
[18] J. Pan, T. Huang, Y. Wang, Z. Wu*, J. Zhang and L. Zhao, “Numerical investigations of cavity-soliton distillation in Kerr resonators using the nonlinear Fourier transform,” Physical Review A., vol. 104, no. 4, 2021.
[19] T. Huang, X. Rang, L. Han, G. Zhang, J. Pan, Y. Wang and Z. Chen*. “Dual-channel sensor based on Tamm plasmon polariton and defect mode hybridization in topological insulator covered photonic crystals,” Journal of the Optical Society of America B-Optical Physics., vol. 38, no. 6, 1951-1957, 2021.
[20] T. Huang,G. Xu, X. Tu, G. Zhang, R. Lei, Y. Wu, J. Pan, L. Shao, and P. P. Shum, “Design of highly sensitive interferometric sensors based on subwavelength grating waveguides operating at the dispersion turning point,” Journal of the Optical Society of American B, vol. 38, no. 9, 2680-2686, 2021.
[21] J. Liao, Y. Xie, T. Huang, Z. Cheng, “Design and analysis of a compact subwavelength-grating-assisted 1.55/2 μm wavelength demultiplexer,” Applied Optics, vol. 60, no. 16, 4972-4975, 2021.
[22] X. Tu, W. Xie, Z. Chen, M. Ge, T. Huang, C. Song, H. Fu, “Analysis of Deep Neural Network Models for Inverse Design of Silicon Photonic Grating Coupler,” IEEE Journal of Lighw. Technol., vol. 39, no. 9, 2790-2799, 2021.
[23] Z. Wu, Q. Wei, B. Zhan, T. Huang*, M. Zhu, L. Li, P. P. Shum, “Manipulation of soliton bunches generated from a polarization-route-assisted vector fiber laser,” IEEE Photonics Journal, vol. 13, no. 1, 1501108, 2021.
[24] J. Pan, Z. Cheng, T. Huang*, M. Zhu, Z. Wu, P. P. Shum, “Numerical Investigation of All-Optical Manipulation for Polarization-Multiplexed Cavity Solitons,” IEEE Journal of Lightw. Technol., vol. 39, no.2, 2021.
[25] T. Huang*, J. Pan, Z. Cheng, G. Xu, Z. Wu, T. Du, S. Zeng, and P. P. Shum, “Nonlinear-mode-coupling-induced soliton crystal dynamics in optical microresonators,” Physical Review A, vol.103, no. 2, 023502, 2021.
[26] X. Zhao, T. Huang*, S. Zeng, C. Son, Z. Cheng*, X. Wu, P. Huang, J. Pan, Y. Wu and P. P. Shum, “Highly Sensitive Polarimetric Sensor Based on Fano Resonance for DNA Hybridization Detection,” Plasmonics., vol. 15, no. 3, 769-781, 2020.
[27] J. Liao, Z. Ding, Y. Xie, X. Wang, Z. Zeng and T. Huang*, “Ultra-broadband and highly sensitive surface plasmon resonance sensor based on four-core photonic crystal fibers,” Optical Fiber Technology., vol. 60, 2020.
[28] Z. Wu, Q. Wei, P. Huang, D. Luo, X. Zhang, S. Fu, L. Zhao, D. Liu, P. Shum. T. Huang, “Single-axis soliton molecule and multiple solitons generation from a vector fiber laser,” Optics Express, vol. 28, no. 4, 5212, 2020.
[29] G. Xu, J. Yan, Z. Chen, T. Huang*, Z. Cheng, P. P. Shum and G. Brambilla, “Design of germanium-silicon carbide hybrid waveguides for mid-infrared third-order parametric conversion,” Opt. Commun., vol. 456, 2020.
[30] J. Pan, Z. Cheng, T. Huang*, C. Song, P. P. Shum, and G. Brambilla, “Fundamental and third harmonic mode coupling induced single soliton generation in Kerr microresonators,” IEEE Journal of Lightw. Technol., vol. 37, no.21, 2019.
[31] T. Huang*, G. Xu, J. Pan, Z. Cheng, P. P. Shum, and G. Brambilla, “Theoretical study of bicharacteristic waveguide for fundamental-mode phase-matched SHG from MIR to NIR,” Opt. Express, vol. 27, no. 11, 15236-25250, 2019
[32] T. Huang*, Q. Wei, Z. Wu, X. Wu, P. Huang, Z. Cheng, and P. P. Shum, “Ultra-flattened normal dispersion fiber for supercontinuum and dissipative soliton resonance generation at 2 μm,” IEEE Photonics Journal, vol. 11, no. 3, 7101511, 2019.
[33] T. Huang*, Y. Xie, Y. Wu, Z. Cheng, S. Zeng, and P. P. Shum, “Compact polarization beam splitter assisted by subwavelength grating in triple-waveguide directional coupler,” Applied Optics, vol. 58, no. 9, 2264-2268, 2019.
[34] X. Zhang, Y. Wang, X. Zhao, T. Huang*, S. Zeng, and P. P. Shum, “Fano resonance based on long range surface phonon resonance in the mid-infrared region,” IEEE Photonics Journal, vol.11, no.2, 4800808, 2019.
[35] L. Han, X. Zhao, T. Huang*, F. Ding, and C. Wu, “Comprehensive Study of Phase-Sensitive SPR Sensor Based on Metal-ITO Hybrid Multilayer,” Plasmonics, vol. 14, no. 6, 1743-1750, 2019.
[36] W. Zou, T. Huang, J. Yuan, D. Wang, X. Li, Z. Cheng, “Modified constellation reshaping method for PAPR reduction of PDM CO-OFDM based on a SLM algorithm,” Applied Optics, vol. 58, no. 7, 1800-1807, 2019
[37] Y. Xie, Z. Chen, Y. Wang, Y. Zhao, T. Huang*, Z. Cheng, “Bloch supermode interaction for high-performance polarization beam splitting,” Optical Engineering, vol. 59, no. 9, 095102, 2019.
[38] P. Huang, T. Huang*, S. Zeng, J. Pan, X. Wu, X. Zhao, Y. Wu, P. P. Shum and G. Brambilla, “Nonlinear gas sensing based on third harmonic generation in cascaded chalcogenide microfibers,” Journal of Optical Society of American B, vol. 36, no. 2, 300-305, 2019.
[39] X. Tu, S. Chen, C. Song, T. Huang* and L. J. Guo, “Ultrahigh Q polymer microring resonators for biosensing applications,” IEEE Photonics Journal, vol. 11, no. 2, 4200110, 2019.
[40] T. Huang, Y. Wu, Y. Xie, and Z. Cheng, “A slot-waveguide-based polarization beam splitter assisted by epsilon-near-zero material,” Photonics and Nanostructures-Fundamentals and Applications, vol. 33, 42-47, 2019.
[41] T. Huang, S. Zeng, X. Zhao, Z. Cheng, and P. P. Shum, “Fano resonance enhanced surface plasmon resonance sensors operating in near-infrared,” Photonics, vol. 5, no. 3. 23, 2018.
[42] T. Huang*, J. Pan, Z. Cheng, C. Song, J. Wang, X. Shao, P. P. Shum, and G. Brambilla, “Photon-plasmon coupling for fundamental-mode phase-matched third harmonic and triplet photon generation,” IEEE Journal of Lightw. Technol., vol. 36, no. 18, 3892-3897, 2018.
[43] L. Han, H. Ding, T. Huang*, X. Wu, B. Chen, K. Ren, S. Fu, “Broadband optical reflection modulator in indium-tin-oxide-filled hybrid plasmonic waveguide with high modulation depth,” Plasmonics, vol. 13, no. 4, 1309-1314, 2018.
[44] L. Li. T. Huang*, X. Zhao, X. Wu, and Z. Cheng, “Highly sensitive SPR sensor based on hybrid coupling between plasmon and photonic mode,” IEEE Photon. Technol. Lett., vol. 30, no. 15, 1364-1367, 2018.
[45] X. Zhao, T. Huang*, P. P. Shum, X. Wu, P. Huang, J. Pan, Y. Wu, and Z. Cheng, “Sensitivity enhancement in surface plasmon resonance biochemical sensor based on transition metal dichalcogenides/graphene heterostructure,” Sensors, vol. 18, no. 7, 2056, 2018.
[46] X. Wu, P. Huang, T. Huang*, Z. Wu, Z. Cheng, B. Chen, K. Ren, and S. Fu, “Tunable all-optical actively mode-locked fiber laser at 2 mu m based on tellurite photonic crystal fiber,” Laser Phys. Lett., vol. 15, no. 6, 065103, 2018.
[47] K. Ren, X. Li, T. Huang*, Z. Cheng, B. Chen, X. Wu, S. Fu, P .P. Shum, “A time and frequency synchronization method for CO-OFDM based on CMA equalizers,” Optics Commun., vol. 416, no. 1, 166-171, 2018.
[48] C. Wu, H. Ding, T. Huang*, X. Wu, B. Chen, K. Ren, S. Fu, “Plasmon-induced transparency and refractive index sensing in side-coupled stub-hexagon resonators,” Plasmonics, vol. 13, no. 1, 251-257, 2018.
[49] C. Song, T. Jin, R. Yanm W. Qi, T. Huang, H. Ding, S. Tan, N. Nguyen, L. Xi, “Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels,” Lab on a Chip, vol. 18, no. 9, 1292-1297, 2018.
[50] T. Huang*, P. Huang, Z. Cheng, J. Liao, X. Wu, J. Pan, “Design and analysis of a hexagonal tellurite photonic crystal fiber with broadband ultra-flattened dispersion in mid-IR,” Optik, vol. 167, 144-149, 2018.
[51] K. Ren, X. Li, T. Huang*, Z. Cheng, B. Chen, X. Wu, S. Fu, P .P. Shum, “A time and frequency synchronization method for CO-OFDM based on CMA equalizers,” Optics Communications, vol. 416, no. 1, 166-171, 2018.
[52] J. Liao, Y. Xie, X. Wang, D. Li, and T. Huang*, “Ultra-flattened nearly-zero dispersion and ultrahigh nonlinear slot silicon photonic crystal fibers with ultrahigh birefringence,” Photonics and Nanostructures-Fundamentals and Applications, vol. 25, 19-24, 2017.
[53] C. Zhuo, and T. Huang*, “Tunable spectral splitting in nanoscale graphene waveguide with coupled resonators,” Journal of Nanophotonics, vol. 11, no. 3, 036013, 2017.
[54] X. Wu, Z. Wu, T. Huang*, B. Chen, K. Ren, and S. Fu, “All-optical actively mode-locked fiber laser at 2-μm based on interband modulation,” IEEE Photonics Journal, vol. 9, no. 5, 1505908, 2017.
[55] T. Huang. “Highly Sensitive SPR Sensor Based on D-shaped Photonic Crystal Fiber Coated with Indium Tin Oxide at Near-Infrared Wavelength,” Plasmonics, vol. 12, no. 3, 583-588, 2017.
[56] N. Zhang, D. Hu, P. Shum, Z. Wu, K. Li, T. Huang, and L. Wei, “Design and analysis of surface plasmon resonance sensor based on high-birefringent microstructured optical fiber,” Journal of Optics, vol. 18, no. 6, 065005, 2016.
[57] T. Wu, P. Shum, Y. Sun, T. Huang, and L. Wei, “Third Harmonic Generation with the Effect of Nonlinear Loss,” Journal of Lightwave Technology, vol. 34, no. 4, 1274-1280, 2016.
[58] T. Huang, Z. Pan, M. Zhang, and S. Fu, “Design of reconfigurable on-chip mode filters based on phase transition in vanadium dioxide,” Applied Phys. Express, vol. 9, no. 11, 112201, 2016.
[59] T. Huang, “TE-pass Polarizer Based on Epsilon-near-zero Material Embedded in a Slot Waveguide” IEEE Photon. Technol. Lett., vol. 28, no. 20, 2145-2148, 2016.
[60] T. Huang, X. Shao, P. P. Shum, T. Lee, T. Wu, Z. Wu, Y. Sun, H. Q. Lam, J. Zhang, and G. Brambilla, “Internal asymmetric plasmonic slot waveguide for third harmonic generation with large fabrication tolerance,” Plasmonics, vol. 11, no. 6, 1451-1459, 2016.
[61] T. Huang, P. M. Tagne, and S. Fu, “Efficient second harmonic generation in internal asymmetric plasmonic slot waveguide,” Opt. Express, vol. 24, no. 9, 9706-9714, 2016.
发明专利:
1. 黄田野, 黄攀. 一种基于级联微光纤中三次谐波产生的气体传感器. 授权中国发明专利.2020年09月04日. 专利号:ZL201910345668.2.
2. 黄田野,黄攀, 伍旭. 一种碲酸盐群速度匹配光子晶体光纤. 中国发明专利授权. 2023年05月26日. 专利号:ZL201711013491.3
3. 黄田野,潘建行. 基于基模间相位匹配转换中红外到近红外的装置和应用. 中国发明专利授权. 2023年08月07日. 专利号:ZL201810350853.6
4. 黄田野,潘建行. 一种可产生中红外纠缠态光子的光波导结构及其方法. 授权中国发明专利. 2020年11月24日. 专利号:ZL201810350188.0
5. 黄田野,任凯旋,李响. 一种相干光OFDM通信系统中定时同步方法、设备及存储系统. 授权中国发明专利. 2020年07月07日. 专利号:ZL201711174166.5
6. 黄田野,吴易恒,谢苑. 一种基于表面等离子体亚波长光栅的偏振分束器. 中国发明专利授权. 2023年02月24日. 专利号:ZL201811010642.4
7. 黄田野,吴志超,魏倩. 一种孤子数量可调锁模光纤激光器. 中国发明专利授权. 2022年05月13日. 专利号:ZL202010775837.9
8. 黄田野,伍旭,黄攀. 一种1.55um 波段至2um波段的波长转换器. 授权中国发明专利.2017年10月25日. 专利号:ZL201711013472.0
9. 黄田野,伍旭. 基于群速度匹配光子晶体光纤的主动锁模光纤激光器,国家发明专利授权,2023年8月4日,2017110134928
10. 黄田野,伍旭. 一种2um波段的光孤子产生装置. 中国发明专利授权. 2023年06月06日. 专利号:ZL201810030129.5
11. 黄田野,肖蕃,王勇,潘建行,吴志超,罗大鹏,张祥莉.一种基于光纤环谐振腔的双光频梳产生系统及方法. 中国发明专利授权. 2020年12月23日. 专利号:ZL202011536371.3
12. 黄田野,谢苑,吴易恒. 一种偏振分束器. 中国发明专利授权. 2023年05月26日. 专利号:ZL201810094046.2
13. 黄田野,赵翔. 一种测量Fano共振传感器检测极限的装置及方法. 中国发明专利授权. 2023年05月26日. 专利号:ZL201811174816.0
14. 陈秉蔚,黄田野. 一种用于可调波长转换的光纤结构. 授权中国发明专利.2017年08月31日. 专利号:ZL201710773672.X.
15. 黄田野,魏倩. 一种2 um耗散孤子共振锁模光纤激光器. 授权中国发明专利.2023年09月01月31日. 专利号:ZL201811533865.9
16. 黄田野,吴志超,魏倩. 一种孤子数量可调锁模光纤激光器. 授权中国发明专利.2022年05月13日. 专利号:ZL202010775837.9
17. 吴志超,华书浩,黄田野. 一种矢量孤子激光器. 授权中国发明专利.2023年10月17日. 专利号:ZL202111590354.2